
Matrix algebra – addition and multiplication
Exercise 2.6
Determine for what values of u and v the following equality holds:
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Exercise 2.7
Evaluate 𝐴 + 𝐵, 𝐴 − 𝐵 and 5𝐴 − 3𝐵 when
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Exercise 2.8
a. If 𝑥 + 0 = 0, what do you know about the components of 𝑥
b. If 0𝑥 = 0, what do you know about the components of 𝑥?
c. Solve the vector equation 4𝑥 − 7𝑎 = 2𝑥 + 8𝑏 − 𝑎 for 𝑥 in terms of vectors 𝑎 and 𝑏.

Exercise 2.9
Compute the products AB and BA, if possible, when A and B are, respectively
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Exercise 2.10
Show that 𝐴(𝐵𝐶) = (𝐴𝐵)𝐶 with:
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Exercise 2.12
Find all matrices 𝐵 that commute with:

𝐴 = (1
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2
3)

in the sense that 𝐴𝐵 = 𝐵𝐴
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